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Midpoint between thresholds and mlss

INTRODUCTION
The exercise intensity eliciting maximal steady state blood lactate 
concentration (MLSS; maximal lactate steady state) is a reliable 
index of endurance capacity [1, 2], i.e. the physiological ability to 
tolerate long lasting exercises at a higher aerobic rate without in-
tramuscular and blood acid-base perturbations [3-5]. Mean meta-
bolic rate at a workload corresponding to MLSS is about 70-75% 
of maximum oxygen uptake (VO2max) for cyclists [4], which does 
not differ from 75 ± 5% VO2max reported in other sports modali-
ties [2, 6]. Indeed, MLSS relative to workload at VO2max (65-70%) 
is more independent of motor task performance than blood lactate 
concentration ([La-]), which ranges from 2 to 8 mmol ∙ L-1 at MLSS, 
and relates to the amount of muscle mass engaged in exercise [2, 
7, 8].

Concerning the methodological aspects of MLSS assessment, the 
gold standard protocol requires three to four 30-minute tests with 
exercise intensity ranging from 60 to 80% VO2max [2]. By applying 
this protocol, the velocity or workload at MLSS is defined as the 
highest exercise intensity attained without blood lactate concentra-
tion changes above 1 mmol.L-1, during the final 20 minutes of the 
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bout [9]. However, its usefulness is limited by the need for time-
consuming tests [5, 10]. The practical disadvantage of numerous 
tests for direct MLSS assessment has motivated studies to investigate 
time saving, less expensive and non-invasive procedures. Many at-
tempts have related protocols of aerobic capacity evaluation, such 
as critical velocity, to the velocity at MLSS, reporting good relation-
ships between these indexes [11-13]. Even other remarkable in-
dexes of endurance capacity such as critical power (CP) [1, 3], 
ventilatory (VT) or lactate threshold (LT) have evidenced similarities 
to the velocity or workload at MLSS [1, 14-20], but none of them 
confirmed that the physiological responses encompassed by MLSS 
could be exchanged for these indexes. 

Despite CP being recognized as the exercise intensity near to 
MLSS, the metabolic correspondence between these two points has 
not been demonstrated [21, 22]. Indeed if, as seems probable, 
intensity corresponding to MLSS in different sports modalities lies 
above VT1 (or LT), and below the point where respiratory compensa-
tion for metabolic acidosis starts (RCP, or VT2) [1, 14, 21, 23-25], 
it would be expected that an intermediate intensity might be the 
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nearest to MLSS. For this reason an intensity corresponding to 
3.5 mmol ∙ L-1 [26], referred to as the individual anaerobic thresh-
old (IAT) [17, 20, 27], or the intensity corresponding to a respira-
tory exchange ratio (RER) equal to 1 [25, 28], has been proposed 
as an indicator of MLSS.

Although the midpoint between the ventilatory thresholds (VT1 
and VT2) from a progressive ramp protocol would correspond to 
MLSS, and one maximal aerobic test would be enough to locate 
MLSS, as far as we have been able to ascertain this has not yet been 
explored. Therefore, the aim of the present study was to verify 
whether the intensity corresponding to the midpoint between the 
ventilatory thresholds (MPVT) corresponds to MLSS intensity among 
an amateur group of cyclists. We hypothesized that the power out-
put corresponding to MPVT, determined during a single maximal 
incremental test, would allow easier calculation of MLSS power 
output.

MATERIALS AND METHODS 
Subjects. Twelve amateur road cyclists (elite-sub23 category) were 
selected for this investigation (21.0±2.6 years, 179.8±7.5 cm, 
72.2±9.0 kg). A physical examination before the start of the study 
was carried out to ensure that each participant was in good health. 
The benefits and risks of the protocol were explained, and the subjects 
signed an informed consent form, following approval from the ethical 
committee of the Technical University of Madrid.

Procedures
Each subject carried out an incremental test during the first visit. 
Several constant load tests of 30 minutes were performed thereaf-
ter (48 h) in order to determine the intensity corresponding to MLSS. 
These steady state tests were carried out with a 48 h interval between 
them. Each cyclist performed all tests at the same time of day under 
similar environmental conditions (22.8±0.6ºC and 62.4±4.4% 
relative humidity). Subjects were asked to refrain from hard physical 
work and consumption of any medication or stimulants for at least 
24 h before each experimental session. During the tests, subjects 
adopted the conventional upright cycling posture. This posture is 
characterized by a trunk inclination of ~75º and by the subject 
placing their hands on the handlebars with elbows slightly bent (~10º). 
Before the tests, each cyclist adjusted the corresponding cycle er-
gometer and used their own clip-on pedals [29, 30].

Gas exchange data were collected continuously during each test 
using an automated breath-by-breath system (Jaeger Oxycon Pro gas 
analyser, Erich Jaeger, Viasys Healthcare, Germany). The following 
variables were recorded during the tests: oxygen uptake (VO2), car-
bon dioxide output (VCO2), respiratory exchange ratio (RER), venti-
lation (VE), respiratory rate (RR), the end tidal partial pressures of 
O2 (PETO2) and CO2 (PETCO2), and the respiratory equivalents of 
O2 (VE·VO2

-1) and CO2 (VE·VCO2
-1). A 12-lead electrocardiogram 

(ECG; Viasys Healthcare, Germany) was continuously recorded dur-
ing the tests to determine heart rate (HR) [31, 32].

Maximal incremental test
A continuous incremental cycling test was used to determine maxi-
mal oxygen uptake (VO2max) and ventilatory thresholds (VT). The test 
was performed on a conventional cycle ergometer (Jaeger ER800, 
Erich Jaeger, Germany). After a 3-min warm-up at 50 W, the work-
load was increased by 5 W every 12 s (25 W·min-1) until exhaustion. 
Subjects were allowed to choose their preferred cadence within the 
70-90 rpm range. Verbal encouragement was provided to ensure 
that maximal effort was reached. All the subjects had previous ex-
perience with this type of protocol, which has been used for the 
physiological evaluation of professional cyclists in several previous 
studies [30, 33-35] and is reliable for the detection of the VT [32]. 
At least two of the following criteria were required for the attainment 
of VO2max: a plateau in VO2 values despite increasing workload, 
RER≥1.1, or the attainment of 95% of the age-predicted maximum 
heart rate (HRmax) [30, 36].

The maximum 15 s average value of VO2 attained during the test 
was reported as VO2max, and the maximum workload achieved 
during the last stage of the progressive test was identified as the 
Maximum [25]. The first and the second VT (VT1 and VT2, respec-
tively) were set at the points of maximum agreement of the most 
common methods of assessment [37]. Briefly, VT1 was calculated 
1) according to the V-slope method [31], where VT1 is the break 
point of the VCO2-VO2 relationship, 2) as the first exponential incre-
ment in ventilation [38], and 3) as the first rise in VE·VO2

-1 without 
increments in VE·VCO2

-1 [39]. VT2 was determined as the second 
rise in ventilation [38] and as the intensity that accompanied a 
second rise in VE·VO2

-1 with a concurrent rise in VE·VCO2
-1 [39]. All 

tests were evaluated by two researchers in a double blind process. 
The coefficient of variation between the assessments of these two 
researchers and those of a highly experienced expert was 1.3%.

Determination of MLSS
Constant load tests of 30 min were carried out to determine MLSS. 
These were performed on a road bicycle fitted with an SRM power-
meter (Schoberer Rad Messtechnik SRM, Jülich, Germany). The 
bicycle was then mounted on a Tacx CycleForce Grand Excel ergom-
eter (Technische Industrie Tacx BV, Netherlands). This ergometer 
was not used for analysis purposes but only as a platform on which 
to mount the test rig. Participants were allowed to use their own 
pedals and saddle. Height and reach were adjusted to match the 
participant’s own bicycle as closely as possible.

The first constant workload trial was performed at an intensity 
corresponding to MPVT, previously calculated in the maximal incre-
mental test [(workload at VT1 + workload at VT2)·2-1]. Another 30 
min test was performed at a higher intensity with an increase of 5% 
of maximum load 48 h later if, during the first test, lactate concentra-
tion [La-] remained steady or decreased. Subsequent 30 min constant 
tests were increased by an additional 5% of the previous intensity 
until no lactate steady state could be maintained. Inversely, if [La-] 
increased continuously or the exercise was interrupted due to the 
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subject’s fatigue during the first 30 min test, the workload was de-
creased by 5% of Maximum for each test until a steady state could 
be maintained. MLSS was defined as the highest workload that could 
be maintained with an increase in [La-] lower than 1.0 mmol·L-1 
during the final 20 min of the constant load tests [5, 28, 40-42].

Blood samples
Before each test, an 18G catheter was inserted into a forearm vein 
for venous blood sampling. Samples were drawn prior to and during 
exercise at different moments in order to determine [La-] every 2 min 
and at the moment when maximal effort was deemed to have been 
reached in the incremental test, every 5 min throughout the steady 
state tests (0, 5, 10, 15, 20, 25 and 30 min) and at exercise ter-
mination if the test could not be maintained. [La-] was analysed by 
an enzymatic method (YSI 1500, Yellow Springs Instruments Co., 
Ohio, USA).

Statistical analysis
All data are reported as mean (±SD). One way ANOVA was used to 
examine the differences between the values obtained at the different 
points in the incremental test (VT1, MPVT, VT2, RER=1.00 and 
Maximum) with the values at MLSS. Multiple comparisons were 
made using the Bonferroni post hoc test. The coefficient of variabil-
ity (CV%), standard error of the mean and Pearson’s correlation 
coefficient were calculated to evaluate the workload differences be-
tween MLSS and the different points. Bland–Altman plots [43] were 
drawn to establish the limits of agreement for the five points of the 
incremental test plotted against MLSS. Bland-Altman plots were also 

used to compare VO2, VE, HR and [La-] assessed using MPVT and 
MLSS. Linear regression analysis and correlation coefficients were 
calculated and included in the plots. All analyses were carried out 
with SPSS version 19 (Chicago, Illinois, USA), and the level of sta-
tistical significance was set at p<0.05 for all analyses.

RESULTS 
The mean value of workload at MLSS was 284±30 W, within  
a range from 236 to 323 W. Table 1 shows the results and the dif-
ferences found between the physiological parameters from the incre-
mental test (VT1, MPVT, VT2, RER=1.00 and Maximum) and MLSS. 
The workload at MLSS was not different from VT1 or MPVT for abso-
lute values (W), those relative to body mass (W.kg-1) or those relative 
to maximum values, but was located closer to MPVT than VT1. The 
VO2 at MLSS was not different from VO2 at MPVT, VT2 or RER=1.00, 
comparing the values in absolute terms, relative to body mass, as 
well as relative to maximum VO2. Otherwise, VO2 values for MLSS 
and MPVT parameters were the closest. Similarly, HR at MLSS did 
not differ significantly from HR at MPVT, VT2 and RER=1.00. The 
values for other parameters at MLSS (VE, RR, VE·VO2

-1, PETO2 
and [La-]) were similar to those at VT2 and RER=1.00.

The Bland-Altman agreement analysis for workload intensity at 
MLSS with workload at MPVT, VT1, VT2, RER=1.00, and Maximum 
are shown in Figure 1. The mean difference between workload at 
MLSS and at VT1 (Fig. 1A), VT2 (Fig. 1C), RER=1.00 (Fig. 1D) and 
Maximum (Fig. 1E) was 31.1±20.0 W (range: 18.3 to 43.8 W), 
-86.0±18.3 W (range: -74.4 to -97.7 W), -63.6±26.3 W (range: 
-49.3 to -86.9 W) and -192.3±48.6 W (range: -161.4 to -223.2 W), 

MLSS VT1 MPVT VT2 RER=1.00 Maximum

Workload (W) 284 ± 30 253 ± 37 311 ± 32 370 ± 32a 347 ± 35a 476 ± 62a

Workload  (W·kg-1) 4.0 ± 0.4 3.5 ± 0.5 4.3 ± 0.5 5.2 ± 0.6a 4.9 ± 0.6a 6.6 ± 0.5a

%Workloadmax 60.0 ± 5.6 53.3 ± 6.3 65.8 ± 5.6 78.3 ± 6.3a 73.8 ± 8.6a 100.0a

VO2 (mL·min-1) 4225 ± 414 3244 ± 464a 4052 ± 362 4588 ± 364 4367 ± 386 5175 ± 474a

VO2  (mL·min-1·kg-1) 58.8 ± 4.7 45.2 ± 6.5a 56.6 ± 6.3 64.2 ± 7.3 61.9 ± 8.4 72.4 ± 8.7a

%VO2max 81.8 ± 7.0 62.7 ± 7.6a 78.5 ± 5.9 88.9 ± 4.8 87.2 ± 4.8 100.0a

VCO2 (mL·min-1) 3821 ± 404 2802 ± 458a 3712 ± 415 4534 ± 416a 4384 ± 389 5173 ± 256a

VE (L·min-1) 121 ± 12 72 ± 15a 99 ± 11a 123 ± 12 119 ± 12 176 ± 12a

HR (beats·min-1) 175 ± 8 155 ± 14a 171 ± 10 183 ± 10 179 ± 8 194 ± 6a

RR (breaths·min-1) 47 ± 7 31 ± 6a 37 ± 5a 41 ± 5 41 ± 6 59 ± 6a

PETO2 (kPa) 13.5 ± 0.5 12.2 ± 0.5a 12.8 ± 0.4a 13.2 ± 0.5 13.2 ± 0.4 14.2 ± 0.5a

PETCO2 (kPa) 4.7 ± 0.5 5.6 ± 0.5a 5.3 ± 0.4 5.3 ± 0.5 5.3 ± 0.4 4.4 ± 0.5

VE·VO2
-1 28.5 ± 2.7 21.6 ± 2.3a 23.8 ± 2.1a 26.2 ± 2.6 26.5 ± 2.1 34.1 ± 2.9a

VE·VCO2
-1 31.6 ± 3.8 24.9 ± 2.3a 26.0 ± 1.8a 26.5 ± 2.3a 26.4 ± 2.1a 33.6 ± 2.2

[La-] (mmol·L-1) 3.60 ± 0.81  1.32 ± 0.43a 1.90  ± 0.69a  3.40 ± 1.27  2.76 ± 1.25  8.10 ± 1.90a 

TABLE 1. Mean ± SD for variables obtained at each point during the incremental test and mean last 20 minute values at MLSS.

Note: VT1, first ventilatory threshold; MPVT, midpoint between the ventilatory thresholds; VT2, second ventilatory threshold; RER=1.00, respiratory 
exchange ratio equal to 1; MLSS, maximal lactate steady state; %Workloadmax, percentage of maximal workload; VO2, oxygen uptake; %VO2max, 
percentage of maximal oxygen uptake; VCO2, carbon dioxide production; VE, ventilation; HR, heart rate; RR, respiratory rate; PETO2, end tidal partial 
pressure of oxygen; PETCO2, end tidal partial pressure of carbon dioxide. a Significantly different from MLSS.
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respectively. Thus, VT1 underestimated MLSS while VT2, RER=1.00 
and Maximum overestimated it. The mean difference of -27.5±15.1 W 
(range: -17.9 to -37.1 W) between workload at MLSS and at MPVT 
was the smallest difference among analysed workload intensities 
(Figure 1B).

Workload corresponding to MLSS was significantly correlated with 
all points (Table 2). Workload at MPVT was highly correlated with 
MLSS (r=0.885, p<0.05), and the standard error of the mean was 
the lowest between MLSS and the different points of the incremen-
tal test (MLSS- MPVT: 4.3 W; Table 2). Moreover, %CV of MLSS-MPVT 
was 6.6%.

FIG. 1. Bland-Altman plots comparing workload for VT1-MLSS (A), MPVT-MLSS (B), VT2-MLSS (C), RER=1.00-MLSS (D) and Maximum-
MLSS (E). Linear regression analysis and correlation coefficient (r) are included in the plots.

R Standard error of the 
mean (W) %CV

MLSS-VT1 0.836* 5.8 8.5

MLSS-MPVT 0.885* 4.3 6.6

MLSS-VT2 0.827* 5.3 18.7

MLSS-RER=1.00 0.730* 8.2 14.3

MLSS-Maximum 0.653* 14.0 35.5

TABLE 2. Correlation coefficient (r), standard error of the mean and 
coefficient of variability (CV%).

Note: VT1, first ventilatory threshold; MPVT, midpoint between the 
ventilatory thresholds; VT2, second ventilatory threshold; RER=1.00, 
respiratory exchange ratio equal to 1; MLSS, maximal lactate steady 
state. * Indicates significant correlation (p<0.05).
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The mean differences in VO2 (173.2±282.8 mL·min-1), VE 
(22.1±12.0 L·min-1), HR (4±11 beats·min-1) and [La-] (1.7±0.9 
mmol·L-1) between MLSS and MPVT are shown in Figure 2. No sig-
nificant correlations were found between MLSS and MPVT in VO2, 
VE, HR and [La-].

DISCUSSION 
The main finding of this study was to locate the workload correspond-
ing to MLSS in well-trained amateur cyclists close to the midpoint 
between the ventilatory thresholds. This intensity is the closest to 
MLSS, as the average mean difference was -27.5±15.1 W, where-
as the intensities at VT1, VT2, RER=1.00 and Maximum are further 
away and these points cannot be taken as indicators of intensity at 
MLSS.

The role of MLSS as an index of aerobic endurance [4, 18, 44-46] 
and as a training stimulus to improve this ability [10, 47, 48] has 
motivated the search for a single assessment protocol [45, 49-51], 
since the gold standard protocol comprises the performance of an 
incremental test followed by successive constant intensity tests [5, 
9, 52]. Although some of the defined points during an incremental 

test have been proposed as intensities that indicate MLSS, which 
would permit its determination with one single test [1, 15, 19, 25, 
27, 28, 52-55], none of these studies is definitive, and the challenge 
remains to be able to determine this intensity with just one test.

The present study has identified MPVT as the nearest intensity to 
MLSS, as the rest of the points determined were further away. The 
difference between MPVT and MLSS could be taken as a reference 
for determining MLSS. Bearing in mind that the maximal test was 
performed on a different ergometer from the one used in the constant 
load tests, the difference in the load between MPVT and MLSS could 
be attributed to this circumstance, decreasing the internal validity of 
the study. However, external validity increases, as the data obtained 
in the laboratory can be transferred to training sessions, using a 
portable ergometer such as the SRM system. We suggest that a 
difference of 27 W in training intensity is probably realistic for ama-
teur cyclists and easy to adjust with a field test, such as a 40 km 
time trial. In any case, the variability of MLSS-MPVT is low and in 
line with the results of Hauser et al. [56], who reported variability 
values of 3% for MLSS power. Furthermore, our results suggest an 
easy approach to determine MLSS, since the mean difference between 

FIG. 2. Bland-Altman analyses between MLSS and MPVT: VO2 (A), VE (B), HR (C) and [La-] (D). Linear regression analysis and correlation 
coefficient (r) are included in the plots.
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workload at MLSS and at MPVT is reduced to -3.2±12.4 W by 
subtracting 27 W from MPVT. Only one subject shows a difference 
greater than 20 W, while the variability is 2.4%.

The difference between RER=1.00 and MLSS reported by Laplaud 
et al. [28] was 3.6±8.1 W, which is less than the difference observed 
in the present study, although they did not report the intensity at 
RER=1.00 as MPVT, despite this point coinciding with the mean 
value between ventilatory thresholds. The estimation of MLSS from 
the intensity at RER=1.00, VT1 and VT2, determined during a 
single maximal incremental field test in well-trained long and middle 
distance male runners, showed a better agreement between veloc-
ity at MLSS and RER=1.00, than with velocity at VT1 and VT2 [25]. 
Again, RER=1.00 coincided with the velocity at MPVT. The level of 
training could affect exercise intensity where RER=1.00 during a 
maximal test. In highly trained athletes this is near to the VT2, as 
shown in our results, due to greater energy production from lipid 
metabolism [28, 57, 58]. Thus, in well-trained athletes it is not 
advisable to consider that the intensity at RER=1.00 represents 
MLSS. Workload at VT1 seems to underestimate the intensity at 
MLSS [1, 28, 59], as even though at this intensity lactate concentra-
tion is steady [53], it does not match the maximum steady state 
level. Our results showed that MLSS was also above VT1. Con-
versely, VT2 overestimates MLSS [1, 28], although both are physi-
ologically related [1]. By definition, MLSS should be between the 
two ventilatory thresholds, as reported by Benito et al. [60], observ-
ing a steady state [La-] for exercise intensity at MPVT.

Different lactate threshold methods have been proposed for esti-
mating MLSS, such as the IAT, or anaerobic thresholds at fixed [La-] 
of 3.5 and 4 mmol ∙ L-1 [16, 19, 61, 62], but none of these meth-
odologies have presented conclusive results. The differences in test 
protocols used in the original threshold investigations, the large in-
dividual differences shown by the lactate thresholds, and [La-] applied 
as references for the anaerobic threshold explain the discrepan-
cies [26, 63, 64]. Probably, lactate threshold methods do not ac-

curately estimate the intensity corresponding to MLSS, as the cor-
respondence found between the fixed lactate concentrations and the 
intensity corresponding to MLSS may be due to a mere coincidence, 
and an overall interpretation of the result neglecting the individual 
differences [48, 54, 64]. The range of [La-] at MLSS [2, 7] and high 
day-to-day variability for lactate at MLSS [56] support the coinci-
dental similarity between a given lactate value from incremental and 
constant intensity exercise. Therefore a comparison of lactate “inten-
sities” should be avoided, being more adequate using power or work-
load parameters. Indeed, differences in physiological profile during 
exercise at constant intensity (and steady metabolic rate) from a 
non-constant and increasing exercise rate have been well document-
ed [1, 65] and likewise shown by our results.

CONCLUSIONS 
The main conclusions of the study were: (a) the workload correspond-
ing to MLSS in amateur cyclists is located at a point which is near 
to the MPVT, being the nearest intensity, while VT1, VT2, RER=1.00 
and Maximum cannot be taken as indexes of MLSS; and (b) MLSS 
could be determined with a single maximum incremental test, as it 
is located at a workload fairly close to the MPVT, or even just below 
it. Further information is required to confirm that the MPVT is a good 
estimator of MLSS, focusing on a broad sample of elite cyclists from 
different specialties, and non-elite and elite endurance athletes from 
other cyclic sports.
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